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Summary

1.

 

Model-based approaches have been used increasingly in conservation biology over
recent years. Species presence data used for predictive species distribution modelling are
abundant in natural history collections, whereas reliable absence data are sparse, most
notably for vagrant species such as butterflies and snakes. As predictive methods such
as generalized linear models (GLM) require absence data, various strategies have been
proposed to select pseudo-absence data. However, only a few studies exist that compare
different approaches to generating these pseudo-absence data.

 

2.

 

Natural history collection data are usually available for long periods of time (decades
or even centuries), thus allowing historical considerations. However, this historical
dimension has rarely been assessed in studies of species distribution, although there is
great potential for understanding current patterns, i.e. the past is the key to the present.

 

3.

 

We used GLM to model the distributions of three ‘target’ butterfly species, 

 

Melitaea
didyma

 

, 

 

Coenonympha tullia

 

 and 

 

Maculinea teleius

 

, in Switzerland. We developed and
compared four strategies for defining pools of pseudo-absence data and applied them to
natural history collection data from the last 10, 30 and 100 years. Pools included: (i) sites
without target species records; (ii) sites where butterfly species other than the target
species were present; (iii) sites without butterfly species but with habitat characteristics
similar to those required by the target species; and (iv) a combination of the second and
third strategies. Models were evaluated and compared by the total deviance explained,
the maximized Kappa and the area under the curve (AUC).

 

4.

 

Among the four strategies, model performance was best for strategy 3. Contrary to
expectations, strategy 2 resulted in even lower model performance compared with
models with pseudo-absence data simulated totally at random (strategy 1).

 

5.

 

Independent of the strategy model, performance was enhanced when sites with his-
torical species presence data were not considered as pseudo-absence data. Therefore,
the combination of strategy 3 with species records from the last 100 years achieved the
highest model performance.

 

6.

 

Synthesis and applications.

 

 The protection of suitable habitat for species survival or
reintroduction in rapidly changing landscapes is a high priority among conservation-
ists. Model-based approaches offer planning authorities the possibility of delimiting
priority areas for species detection or habitat protection. The performance of these
models can be enhanced by fitting them with pseudo-absence data relying on large
archives of natural history collection species presence data rather than using randomly
sampled pseudo-absence data.
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Introduction

 

Predictive species distribution models make use of sta-
tistical techniques and geographical information tech-
nology to simulate the spatial distribution of species
(reviewed by Guisan & Zimmermann 2000). Over the
last few decades, predictive modelling has become a
prominent tool with which to assess the impacts of
climate change (Busby 1991; Guisan & Theurillat 2000;
Dirnböck, Dullinger & Grabherr 2003) and land-use
change (Pearson, Turner & Drake 1999; Osborne,
Alonso & Bryant 2001; Dirnböck, Dullinger & Grab-
herr 2003) on species distributions. Moreover, it has been
applied to detect new populations of rare and endan-
gered species in the field (Engler, Guisan & Rechsteiner
2004) and has served to identify areas with a high
potential for (re)colonization (Pearce & Lindenmayer
1998; Hirzel 

 

et al

 

. 2002). Hence, species distribution
models have become important tools for nature con-
servation planning (Peterson 

 

et al

 

. 2000; Guisan &
Thuiller 2005; Whittaker 

 

et al

 

. 2005).
Generalized linear modelling (GLM; McCullagh &

Nelder 1989) is a common way to model species’ dis-
tributions based on presence–absence data. Although
the presence of a species can be unambiguously con-
firmed in the field, provided that its identification is
correct, the absence of a species is much harder to tes-
tify. Species absence can result from: (i) a species being
undetected at the visited site (MacKenzie 

 

et al

 

. 2003);
(ii) the species being only temporary absent from the
site (for example not yet recolonized after an extinction
event and a biannual cycle); (iii) the site not yet being
colonized (invasive species; Hirzel, Helfer & Metral
2001); (iv) the environment being unsuitable. For hab-
itat modelling purposes only the latter case represents a
‘real’ absence. Misclassification of a site as an absence
may be more frequent for small populations, for exam-
ple with rare and endangered species (McArdle 1990;
Kéry 2002). Kéry (2002) calculated for a snake species
that up to 34 successive unsuccessful visits of a location
have to be undertaken before it can be assumed with
95% confidence that the species is absent.

‘Presence-only’ data are very common sources of spe-
cies distribution information, present in the form of
natural history collections (NHC; Graham 

 

et al

 

. 2004)
such as museum collections, herbaria, floras and assem-
bled in reports of field trips. Such data are often avail-
able for quite long time periods (e.g. up to 100 years),
allowing changes in species presence to be tracked.
Indeed, nearly all historical data available originate from
NHC databases, and they constitute a unique source for
historical analyses. As historical records mostly ori-
ginate from opportunistic sampling, they show sampling
biases (Graham 

 

et al

 

. 2004). For instance, rare species
are often more abundant in collections than common
species, and certain localities have been more frequently
visited than others. Further difficulties when working
with historical data might arise when no information is
available on the locality and/or date on which the species

was found. Moreover, the spatial location of the find
might only be given approximately, or there might be
problems with the nomenclature resulting in ambigu-
ous use of synonyms (Graham 

 

et al

 

. 2004). Furthermore,
there is no way to verify the data and no knowledge
usually exists about data quality. However, even though
NHC data are usually sampled without design, and
thus are often thought of as being useless for robust statis-
tical analysis and modelling, they are numerous and
thus provide an amazing source of species distribution
information.

There are many ways to model species distribution
with presence-only data. One category of modelling
techniques is based on Hutchinson’s (1957) concept of
the ecological niche and uses presence-only data (

 

-



 

, Busby 1991; 

 



 

, Houlder 

 

et al

 

. 2000; PCA-
based technique, Robertson, Caithness & Villet 2001;
Ecological niche factor analysis (ENFA), Hirzel 

 

et al

 

.
2002). A second category solves the problem of missing
absence data by randomly sampling cells in the study
area or by using more sophisticated procedures to select
such ‘pseudo-absence data’ (Zaniewski, Lehmann &
Overton 2002; Engler, Guisan & Rechsteiner 2004).
Random selection has not often resulted in the best
models. Hirzel 

 

et al

 

. (2002) mention that the inclusion
of doubtful absence data into a GLM may cause a
prominent decrease in model performance. Hence a
well considered choice of pseudo-absence data has to
be made prior to model fitting.

Even though NHC data are very abundant, we are
not aware of any study that has taken advantage of this
source of information for predicting species distribu-
tion over a broader geographical extent, where species
have mostly not been sampled systematically. Because
we apply static distribution models, we assume a rela-
tive equilibrium between the environment (e.g. land use
and climate) and the observed species pattern that is only
valid for a limited period of time (Guisan & Theurillat
2000; Guisan & Zimmermann 2000). Hence historical
species presence data should not be used for predicting
recent species’ distributions. However, we highlight their
use as a ‘ghost of past presence data’ in order to support
the selection of pseudo-absence data.

In this study we assessed two main issues. First, we
tested various strategies of resampling NHC data, as a
way of generating pseudo-absence data to be used in
modelling analyses. Secondly, we tested the importance
of historical data (past presence data) and, in particular the
best way to incorporate them into the modelling process.

We tested four strategies for generating initial pools
of pseudo-absence data, using three butterfly species,

 

Melitaea didyma

 

, 

 

Coenonympha tullia

 

 and 

 

Maculinea
teleius

 

, as models. The strategies made potential use of
the spatial and temporal presence information of another
197 butterfly species in the study area. Initial pools for
a given target species were composed of sites where the
modelled species had not been recorded (S1), sites
where butterfly species other than the modelled species
were present (S2), sites that did not contain butterfly
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species but had habitat requirements similar to the
modelled species (S3), sites generated by combining the
second and third strategies (S4). The strategies were
applied to NHC data sets containing species records
from either 10 (1991–2000), 30 (1971–2000) or 100 (1901–
2000) years to obtain pseudo-absence data. Using the
data sets of 30 or 100 years, species presence data from
before 1991 were not used as presence data in the bino-
mial GLM. However, such ‘ghost’ presence data were
excluded as possible pseudo-absence data by the strat-
egies used. Therefore the design established for this study
not only allowed the influence of different selection strat-
egies to be assessed but also the impact of using different
large historical species data sets on model performance.

 

Materials and methods

 

 

 

The study was conducted in Switzerland (41 293 km

 

2

 

).
The northern part of the country (the Jura Mountains,
Plateau and northern foothills of the Alps) is domin-
ated by maritime climatic conditions, whereas the south
of the Alps is influenced by Mediterranean conditions.
High annual rainfall occurs in the Jura Mountains and
across the Alps. However, inner-alpine valleys orientated
west–east have low precipitation values because they
are situated in the rain shadow. Mean summer temper-
atures on the Plateau are between 19 

 

°

 

C and 21 

 

°

 

C.
Politically, Switzerland is divided into 26 cantons

that are further split into the smallest political entities,
the communes. Data used for analyses in the present

study were derived from and refer to the 2836 com-
munes present in 2003.

 

     

 

The data comprised records of 200 butterfly species
(Rhopalocera) originating from observations reported
by amateur and professional entomologists between
1901 and 2000 (used for model calibration) and between
2001 and 2005 (used for model evaluation). Species
data were spatially aggregated at the communal level
(political entities) because (i) most of  the environmen-
tal predictors were recorded at this level and (ii) historical
field observations had implied uncertainties concerning
their spatial accuracy that could be levelled out by aggre-
gation at the communal level (i.e. more data were avail-
able at this resolution). Three sets of species data were
created that differed in the length of the time periods
from which the presence data of the 200 species ori-
ginated. The first set covered species presence data from
1991 to 2000 (10 years), the second from 1971 to 2000
(30 years) and the third from 1901 to 2000 (100 years).
The longer the time period the more communes there
were with species presence data in the data sets.

 

 

 

From the 200 available species, three species, 

 

Maculinea
teleius

 

, 

 

Coenonympha tullia

 

 and 

 

Melitaea didyma

 

 (Table 1),
were selected as model species for the analyses and are
referred to as target species. Both 

 

M. teleius

 

 and 

 

C. tullia

 

are ecologically strongly related with fenlands, whereas

Table 1. List of the three target species modelled by GLM and the auxiliary species used in strategies 3 and 4 to define the initial
pools of pseudo-absence data. The distribution of M. teleius was modelled with C. tullia as auxiliary species and vice versa. The
current status of vulnerability is given according to the International Union for Conservation of Nature and Natural Resources
(IUCN) and the Swiss Red List
 

Scientific name* Common name IUCN‡ Red List§

Target species
Maculinea teleius Bergsträsser 1779 Scarce large blue LR/nt 2
Coenonympha tullia Müller 1764 Great heath – 2
Melitaea didyma Esper 1779 Spotted fritillary – 3

Auxiliary species for M. teleius and C. tullia (not including either C. tullia or M. teleius)
Maculinea alcon Denis & Schiffermüller 1775 Alcon large blue LR/nt 1
Maculinea nausithous Bergsträsser 1779 Dusky large blue LR/nt 2
Coenonympha hero Linnaeus 1761 Scarce heath – 1†
Coenonympha oedippus Fabricius 1787 False ringlet LR/nt 1†
Boloria aquilonaris Stichel 1908 Cranberry fritillary – 2
Colias palaeno europome Esper 1777 Moorland clouded yellow – 3
Vacciniina optilete Knoch 1781 Cranberry blue – –

Auxiliary species for M. didyma
Aricia agestis Denis & Schiffermüller 1775 Brown argus – 3
Aricia artaxerxes Fabricius 1793 Northern brown argus – –
Lycaeides idas Linnaeus 1761 Idas blue – 3
Melitaea cinxia Linnaeus 1758 Glanville fritillary – 2
Pseudophilotes baton Bergsträsser 1779 Baton blue – 3

*Taxonomy according to Ebert & Rennwald (1993).
‡http://www.iucnredlist.org (accessed 15 May 2006); LR/nt, lower risk/near threatened.
§Described in Gonseth (1994). 1, risk of extinction; 2, heavily vulnerable; 3, vulnerable; †extinct.
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M. didyma

 

 is mainly a dry grassland species. All three
species appear on the Swiss red lists as vulnerable or
endangered. This status originates from past and ongo-
ing land-use changes that have led to a loss of  suitable
habitats. Such changes include drainage, fertilization,
extension of pasture and afforestation (Gonseth 1987;
Ebert & Rennwald 1993).

 

 

 

Two selection strategies for pseudo-absence data pre-
sented below made use of the spatial distribution data
of species that show habitat requirements similar to the
target species. These species are referred to as auxiliary
species (Table 1). For 

 

M. teleius

 

, we selected 

 

C. tullia

 

and seven species appearing dominantly in wet habitats
as auxiliary species. In the case of 

 

C. tullia

 

, 

 

M. teleius

 

was selected together with the same seven species. The
two species 

 

Coenonympha hero

 

 and 

 

C. oedippus

 

 have not
been observed since the 1980s and are therefore con-
sidered extinct in Switzerland. Auxiliary species for 

 

M.
didyma

 

 included five species selected in the ecofaunal
database of  Walter & Schneider (2003) because of
identical habitat characteristics (dry grassland, scree)
as well as similar altitudinal range and threats, both
described in Gonseth (1987).

 

 

 

For every commune, we prepared predictors related to
(i) climate, (ii) land use, (iii) agricultural structures, (iv)
communal structures and (v) spatial location of the
communes (Table 2). The latter was included to account
for a spatial trend in the data. Predictors of land use,
agricultural and communal structures represented

either the state of the landscape (e.g. wetland and inten-
sively cultivated areas) or a driving force affecting the
landscape (e.g. number of tractors and classification as
an agglomeration). None of the predictors exhibited a
correlation greater than 0·6.

 



 

Climatic predictors included mean July temperature
and mean July water budget (precipitation – potential
evapotranspiration). These were available as geographic
information system (GIS ) grid layers with a resolution
of 25 

 

× 

 

25 m. They were initially derived from a digital
elevation model (DEM; Swisstopo 2005) and meteor-
ological data from the period 1961–90 (for statistical
methods see Zimmermann & Kienast 1999). Means
of the climatic predictors were calculated for every
commune using ArcGIS (ESRI Inc., Redlands, CA).

 

    

 

Population and agricultural censuses for every Swiss
commune were carried out in 2000. Population data
were obtained from Schuler, Ullmann & Haug (2002).
Census data on agriculture, inhabited apartments and
employment were obtained from the Swiss Federal
Statistical Office. As the communes differed in size, we
related the data to either the communal or agricultural
area. The resulting percentages then allowed compar-
isons between the communes.

 

 

 

We fitted binomial GLM with a logistic link function
in the R statistical software (R1·9·1 A Language &

Table 2. Description of the environmental predictors. Type refers to the numbering used in the main text. The spatial reference
indicates if  the variable was expressed as a proportion of the agricultural (AA) or communal area (CA)
 

Type Description Spatial reference Unit

1 Mean July temperature – °C
1 Mean July water budget (precipitation – potential evapotranspiration) – mm
2 Intensively cultivated area (including arable land, meadows that are 

ploughed from time to time, vineyards and orchards)
CA %

2 Area of natural (native) meadows CA %
2 Area of wetlands CA %
3 Number of farms with an agricultural area of 0–5 ha CA n ha−1

3 Number of farms with an agricultural area of 5–10 ha CA n ha−1

3 Number of farms with an agricultural area of 10–20 CA n ha−1

3 Number of farms with an agricultural area of > 20 ha CA n ha−1

3 Number of full-time farmers AA n ha−1

3 Number of part-time farmers AA n ha−1

3 Number of farmers between 35 and 50 years AA n ha−1

3 Number of farmers between 50 and 65 years AA n ha−1

3 Number of livestock AA n ha−1

3 Number of tractors AA n ha−1

4 Number of inhabited apartments CA n ha−1

4 Commune classified as an agglomeration* or not – –
5 x coordinate of the centroid of the commune – –
5 y coordinate of the centroid of the commune – –

*Definition according to Schuler (1997).
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Environment, © 2004). The predictors remaining in
the final models were selected using the R-function
STEP-AIC, a stepwise backward selection procedure
based on the Akaike information criterion (AIC).

For every model, communes where the target species
were recorded in the time period 1991–2000 were used
as presence data. As static modelling assumes equilib-
rium between the environment and observed species
patterns (Guisan & Zimmermann 2000), we did not
include presence data from before 1991 to fit with the
environmental predictors recorded in 2000.

 

   -
 

 

Binary GLM not only require species presence data
but also absence data. However, such absence data are
rarely collected because attention is usually concentrated
on finding new populations or reconfirming existing
records. As we lacked validated absence data, pools of
initial pseudo-absence communes were delineated, out of
which communes were then randomly selected as absence
data of the target species. Initial pools of pseudo-absence
data were obtained by applying four different selection
strategies (denoted as S1, S2, S3 and S4) to each data
set.

 

Strategy 1 (S1)

 

From the total of communes present in the area of
investigation, only those for which no presence data of
the target species were reported remained in the pool.

 

Strategy 2 (S2)

 

As the data used did not originate from exhaustive
inventories, not all communes showed species records.
In strategy 2 only communes for which presence data of
species other than the target species were mentioned
remained in the pool of pseudo-absence data.

 

Strategy 3 (S3)

 

In the pool of pseudo-absence data of strategy 3, only
communes where no target species records nor auxili-
ary species records were present remained.

 

Strategy 4 (S4)

 

Strategy 4 was a combination of strategy 3 and strategy
2. Therefore, communes that contained presence data
of neither the target nor the auxiliary species but
showed at least one species record remained in the pool
of pseudo-absence data.

The four selection strategies were applied to each of
the three butterfly species data sets comprising the dis-
tribution data of all 200 butterfly species over varying
time periods (Fig. 1 and Table 3). Time period 1 (T1)
contained butterfly species records from 1991 to 2000,
which was identical to the time period from which the
presence data of the target species originated. Time
period 2 (T2) covered 30 years (1971–2000) and time
period 3 (T3) 100 years (1901–2000). Hence, the com-
bination of the four strategies with the three time peri-
ods not only allowed comparisons of the performance
of different selection strategies, but also enabled us to
assess the performance of  different large historical
species data sets.

By applying strategies 1 and 3 to the time periods, the
initial pools of pseudo-absence data contained fewer
communes the longer the time period lasted, as more
presence data of the target species (in strategy 1) or tar-
get and auxiliary species (in strategy 3) were available
(Table 3). In comparison, the number of communes
increased in the initial pools of strategies 2 and 4, as
more communes with at least one species record were
retained in the pools the longer the period (Table 3).
Therefore, by increasing the time period from 10 to 30
and 100 years, we assessed the impact of accounting for
former presence data on model performance in strate-
gies 1 and 3. On the other hand, in strategies 2 and 4 we

Fig. 1. Analysed framework showing the different species data sets and the different resampling strategies used to derive the
pseudo-absence data.
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Table 3.

 

Summary list of  all 16 model types, for which the number of  communes remaining in the initial pools of  pseudo-absence communes (Pool) is indicated. Additional, for strategies 2 and 4 the number of
communes without any species records is given (No rec.)

 

 

 

 

Model type Criteria communes have to meet to be selected as pseudo-absence

M. didyma C. tullia M. teleius 

Pool No rec. Pool No rec. Pool No rec.

S1–T1 No presence of  the target species reported for 1991–2000 2744 0 2820 0 2810 0
S1–T2 No presence of  the target species reported for 1971–2000 2685 0 2783 0 2792 0
S1–T3 No presence of  the target species reported for 1901–2000 2531 0 2729 0 2752 0
S2–T1 Presence of  butterfly species other than the target species reported for 1991–2000 1056 1688 1132 1688 1122 1688
S2–T2 Presence of  butterfly species other than the target species reported for 1971–2000 1492 1193 1590 1193 1599 1193
S2–T3 Presence of  butterfly species other than the target species reported for 1901–2000 1582 949 1780 949 1803 949
S3–T1 No target and no auxiliary species records reported for 1991–2000 2571 0 2648 0 2648 0
S3–T2 No target and no auxiliary species records reported for 1971–2000 2360 0 2507 0 2507 0
S3–T3 No target and no auxiliary species records reported for 1901–2000 2163 0 2374 0 2374 0
S4–T1 No target and no auxiliary species records but at least one butterfly record for 1991–2000 883 1688 960 1688 960 1688
S4–T2 No target and no auxiliary species records but at least one butterfly record for 1971–2000 1167 1139 1314 1139 1314 1139
S4–T3 No target and no auxiliary species records but at least one butterfly record for 1901–2000 1214 949 1425 949 1425 949
S2–T1.R Same as in S2–T1, additionally no target species records reported for 1901–90 904 1688 1064 1688 1089 1688
S2–T2.R Same as in S2–T2, additionally no target species records reported for 1901–70 1352 1193 1540 1193 1566 1193
S4–T1.R Same as in S4–T1, additionally no target species records reported for 1901–90 650 1688 783 1688 783 1688
S4–T2.R Same as in S4–T2, additionally no target species records reported for 1901–70 1006 1193 1196 1193 1196 1193
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primarily assessed the impact of not taking into
account communes without any species records. To
account for former presence data in these strategies,
four additional model types were established (Fig. 1).
Therefore, we restricted the initial pools of the model
types S2–T1 and S2–T2 so that no presence data of the
target species originating from the period 1901–90
remained (new model types S2–T1.R and S2–T2.R).
Similarly, in the initial pools of the model types S4–T1
and S4–T2, communes containing records of target or
auxiliary species from the period 1901–90 were not
retained as pseudo-absence data any more (S4–T1.R
and S4–T2.R). Hence, for every target species 16 model
types were performed (Table 3).

There is currently an ongoing discussion about how
severe absence data that lie outside a species’ known
distribution (i.e. ‘naughty noughts’; Thuiller et al.
2004; Maggini et al. 2006) influence species’ response
curves and thus spatial predictions. However, as in our
case the species were widely spread in a relatively small
study area we did not include further strategies to limit
pseudo-absence communes based on rules for remov-
ing naughty noughts.

  

As other studies have shown, predictive distribution
models based on a random selection of pseudo-absence
data could often be improved using other modelling app-
roaches (Engler, Guisan & Rechsteiner 2004). Hence we
expected strategy 1 to show the lowest performance. We
further hypothesized that model performance should
increase from strategy 1 to strategy 2, as we would
expect the target species to be more likely to be absent
at the same time as a lot of other species were reported.
Even though this assumption was expected to hold
better for communes where many species as well as the
target species had been found, we did not investigate
such a differentiation further and defined the minimum
number of species presence data in the communes as
one. Furthermore, we hypothesized that the perform-
ance would also increase from strategy 1 to strategy 3,
where presence data of  auxiliary species were not
considered as pseudo-absence data. As the modelled
species and the auxiliary species share most habitat
characteristics, we expected communes where auxiliary
species were recorded to provide possible presence data
for the target species. In such communes, the target
species might have been temporally absent, not been
detected or not yet colonized the site. Therefore, pres-
ence data of auxiliary species indicated possible recent
or future habitats of the target species. As strategy 4
was a combination of strategy 2 and strategy 3, we
assumed that it should outperform strategies 2 and 3.

Concerning the different time periods used, we hypo-
thesized that the longer the time period the better the model
performance. By considering longer time periods,
fewer communes where target or auxiliary species had
occurred remained in the pools of initial pseudo-absence

data. Even though landscape changes had taken place,
it is possible that a site where a target or auxiliary species
had once been recorded still offered a suitable habitat.
In Switzerland we would expect less change to have
occurred in the Alps and therefore that former presence
data would be more likely to be reconfirmed in this area
than in the Swiss Midlands. Therefore, when longer
time periods were considered, communes where species
could potentially be reconfirmed were excluded from
the pools of pseudo-absence data. Hence we expected a
better discrimination in the logistic regression and thus
a better model performance.

Whereas the pools of pseudo-absence data in strate-
gies 2 and 4 still contained former presence data of target
and auxiliary species, these were removed in the restricted
pools. Therefore we assumed that models based on the
restricted pools of pseudo-absence data would outper-
form their corresponding models that relied on the non-
restricted pools.

 

Models were evaluated on the basis of  the training
data set by using resampling techniques (Guisan &
Zimmermann 2000), as at the communal level no reliable
presence–absence data were available for butterfly
species in Switzerland. We calculated the adjusted D2, the
maximum Kappa and the area under the curve (AUC)
as measures of model performance, resulting in species-
specific hierarchies of model types showing increasing
model performance. The robustness of the resulting
rankings was assessed further using recent species pres-
ence data.

We fitted 1000 GLM for each model type to account
for the variance resulting from sampling pseudo-absence
data at random. The fit of every model run was char-
acterized by the percentage of deviance reduction
(equivalent to the variance reduction in least-squares
models) explained by the GLM. We calculated the
adjusted D2 (Guisan & Zimmermann 2000), which
takes into account the number of observations and
parameters used to build the model. Each model run
was evaluated using a leave-one-out jack-knife pro-
cedure (Manly 1997; Guisan & Zimmermann 2000;
Jaberg & Guisan 2001). Therefore, using the same set of
predictors selected in the final model, new GLM were
fitted on data sets reduced by a single observation at a
time. This procedure was repeated until every observa-
tion of the source data set was left out once. At each
run, the fitted model was used to predict the response
for the excluded observation. Predictions were reclas-
sified to presence–absence (1–0) for all threshold values
between 0·05 and 0·95 by increments of 0·05, and con-
fusion matrices with the observed presence–absence
information were generated (Fielding & Bell 1997).
The Kappa statistic (Cohen 1960; Fielding & Bell 1997)
was calculated for every confusion matrix, and the
maximum Kappa value (max. Kappa) was assigned to
the model (Guisan & Hofer 2003; Engler, Guisan &
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Rechsteiner 2004). Moreover, we used the threshold-
independent receiver operating characteristic (ROC)
method (Fielding & Bell 1997) to derive the AUC value
as a measure of prediction success. The AUC takes val-
ues between 0·5 and 1·0, where a value of 0·5 indicates
a chance performance and a value of 1·0 represents a
model that perfectly separates presence and absence
data. We used a one-tailed Mann–Whitney U-test to
test pairs of strategies and/or time periods for increases
in model performance (measured by the adjusted D2,
the max. Kappa and the AUC) as stated in our hypo-
theses. Hence for each performance measure rankings
of the 16 model types resulted.

To assess further the robustness of these rankings,
obtained by internal evaluation (resampling techniques),
we additionally extracted the probabilities of occurrence
for independent species presence data that (i) were
recorded between 2001 and 2005 and (ii) did not appear
in communes with target species presence data used for
model calibration. We averaged the occurrence prob-
abilities resulting from the 1000 fitted models for every
model type and ranked the types in ascending order.
For each species we defined the agreement between the
different rankings (defined by the adjusted D2, max.
Kappa, AUC and occurrence probabilities) of the model
types using Spearman rank correlation. Additionally,
we compared the rankings of each performance meas-
ure and the occurrence probability across the species. A
Spearman correlation of 1 represents an identical order
of the model types, whereas values close to 0 indicate
no agreement.

Results

     


The differences in model performance between strate-
gies taking into account communes without species
records (strategies 1 and 3) and strategies where such
communes did not remain in the initial pool of pseudo-
absence data (strategies 2 and 4) are shown in Fig. 2 for
M. didyma and time period 1 (1991–2000). The results
demonstrate that the exclusion of communes without
species records did not lead to the hypothesized increase
in model performance as measured by the adjusted D2,
max. Kappa and AUC values (P = 1). The results from
C. tullia confirmed these findings, whereas for M. teleius
partly significant increases were obtained (Fig. 2).
However, these results were only obtained with the
AUC with significant increases for strategy 2 vs. strat-
egy 1 and strategy 4 vs. strategy 3 (P < 0·001).

The comparisons between strategy 1 and strategy 3
and between strategy 2 and strategy 4 revealed the addi-
tional effects of not retaining presence data of auxiliary
species in the pools of initial pseudo-absence data. The
results for M. didyma and M. teleius in Fig. 2 were con-
sistent with the findings achieved for C. tullia, with both
strategy 3 and strategy 4 always significantly (P < 0·001)
outperforming strategy 1 and strategy 2, respectively.

  - 


Considering presence data from longer time periods
(T2 and T3), the resulting model performances of the
four selection strategies were comparable to the results
obtained using data from T1 (Table 4). Overall, strate-
gies 1 and 3 outperformed strategies 2 and 4, respectively,
except in the case of M. teleius, where model type S4–
T2 significantly (P < 0·01) outperformed S3–T2 using
the AUC to quantify model performance.

The performances of  M. didyma for the different
historical data records are illustrated in Fig. 3. Using
historical species records from the 100-year period
(T3, 1901–2000) instead of records from only the last 10
years (T1, 1991–2000) significantly enhanced model
performance (P < 0·001) for every strategy used. Even
the use of species data from T2 (1971–2000) instead of T1
increased model performances significantly (P < 0·001).
The same trend of increasing model performance was
also achieved with C. tullia (Table 4). However, statis-
tically non-significant (P > 0·05) differences existed for
the adjusted D2 between S1–T3 and S1–T2 as well as for
the AUC between S3–T2 and S3–T1. In the case of M.
teleius, including longer historical data records signi-
ficantly increased model performance of strategy 1 regard-
ing the adjusted D2 (P < 0·05) and AUC (P < 0·01) as
well as of strategy 3 for all three performance measures
(P < 0·001). Nevertheless, in strategy 1 the Kappa val-
ues were significantly different (P < 0·05) only between

Fig. 2. Model performances for the four strategies S1, S2, S3 and S4 for (a) Melitaea
didyma, (b) Coenonympha tullia and (c) Maculinea teleius. Model performance is
expressed by the adjusted D2, max. Kappa and AUC for the time period T1 (1991–2000).
Each box-plot represents the results of 1000 model runs with randomly selected pseudo-
absence communes from the respective initial pool.
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Table 4. Ranking of the different model types (MT) for the species according to the three model performance measures adjusted D2, max. Kappa and AUC and the mean occurrence probabilities achieved for the
evaluation data (new presence data 2001–05). Model performance decreases from top to bottom
 

Adjusted D2 max. Kappa AUC Occurrence probabilities 

MT P1 P2 Mean SD MT P1 P2 Mean SD MT P1 P2 Mean SD MT Mean SD

M. didyma (prevalence = 0·5) Evaluation data (n = 33)
S3–T3 *** *** 0·644 0·051 S3–T3 *** *** 0·772 0·037 S3–T3 *** *** 0·963 0·010 S3–T3 0·66 0·34
S3–T2 *** *** 0·610 0·051 S3–T2 *** *** 0·748 0·038 S3–T2 *** *** 0·956 0·011 S3–T2 0·64 0·34
S1–T3 NS *** 0·585 0·052 S4–T1.R NS * 0·729 0·036 S1–T3 NS *** 0·950 0·012 S1–T3 0·62 0·34
S4–T3 *** *** 0·583 0·048 S4–T3 NS * 0·728 0·037 S4–T3 *** *** 0·950 0·011 S4–T1.R 0·62 0·35
S4–T2.R NS *** 0·575 0·050 S4–T2.R NS *** 0·726 0·040 S4–T2.R NS *** 0·948 0·012 S4–T3 0·61 0·34
S4–T1.R *** *** 0·574 0·048 S1–T3 *** *** 0·725 0·041 S4–T1.R ** *** 0·948 0·011 S4–T2.R 0·61 0·34
S3–T1 *** *** 0·566 0·053 S3–T1 *** *** 0·715 0·041 S3–T1 *** *** 0·946 0·013 S3–T1 0·61 0·33
S1–T2 *** *** 0·552 0·054 S1–T2 ** *** 0·703 0·042 S1–T2 *** *** 0·943 0·014 S1–T2 0·60 0·33
S4–T2 NS *** 0·537 0·049 S4–T2 * *** 0·698 0·040 S4–T2 NS *** 0·939 0·014 S1–T1 0·60 0·32
S1–T1 *** *** 0·536 0·053 S1–T1 *** *** 0·694 0·041 S1–T1 *** *** 0·938 0·014 S4–T2 0·59 0·33
S2–T3 *** *** 0·517 0·049 S2–T3 ** *** 0·681 0·041 S2–T3 *** *** 0·932 0·014 S2–T3 0·58 0·34
S2–T2.R *** *** 0·504 0·048 S2–T2.R *** *** 0·676 0·039 S2–T2.R *** *** 0·929 0·014 S2–T1.R 0·57 0·34
S2–T1.R *** *** 0·489 0·046 S2–T1.R *** *** 0·668 0·038 S2–T1.R *** *** 0·924 0·14 S2–T2.R 0·57 0·34
S2–T2 ** *** 0·463 0·050 S4–T1 NS *** 0·646 0·040 S2–T2 NS *** 0·917 0·016 S4–T1 0·55 0·32
S4–T1 *** 0·459 0·051 S2–T2 *** 0·644 0·041 S4–T1 *** 0·916 0·016 S1–T2 0·55 0·32
S2–T1 0·418 0·050 S2–T1 0·616 0·041 S2–T1 0·902 0·018 S2–T1 0·54 0·31

C. tullia (prevalence = 0·05) Evaluation data (n = 7)
S3–T3 *** *** 0·671 0·149 S3–T3 *** *** 0·658 0·078 S3–T3 *** *** 0·968 0·026 S3–T3 0·054 0·05
S3–T2 *** *** 0·635 0·128 S3–T2 *** *** 0·644 0·081 S3–T2 NS *** 0·926 0·026 S4T1.R 0·051 0·03
S3–T1 ** *** 0·596 0·119 S4–T3 * *** 0·629 0·092 S3–T1 *** *** 0·961 0·025 S3–T2 0·049 0·04
S4–T3 NS NS 0·580 0·124 S3–T1 *** *** 0·621 0·080 S4–T3 NS * 0·954 0·028 S4–T2.R 0·046 0·03
S4–T2.R NS NS 0·580 0·133 S4–T2 NS NS 0·608 0·088 S1–T3 NS * 0·952 0·032 S3–T1 0·045 0·04
S4–T1.R NS NS 0·576 0·135 S4–T2.R NS *** 0·607 0·087 S4–T2.R NS NS 0·951 0·029 S1–T1 0·044 0·03
S1–T3 NS NS 0·568 0·110 S1–T3 ** ** 0·605 0·084 S4–T1.R NS NS 0·951 0·029 S2–T1 0·044 0·03
S4–T2 NS *** 0·567 0·122 S1–T2 NS *** 0·593 0·084 S1–T2 NS *** 0·950 0·031 S1–T2 0·043 0·03
S1–T2 *** *** 0·563 0·108 S4–T1.R *** *** 0·593 0·086 S4–T2 * *** 0·948 0·030 S2–T1.R 0·043 0·02
S4–T1 ** *** 0·521 0·093 S4–T1 *** *** 0·577 0·087 S1–T1 *** *** 0·946 0·030 S1–T3 0·043 0·03
S1–T1 ** *** 0·508 0·093 S2–T3 NS ** 0·560 0·091 S4–T1 ** *** 0·940 0·030 S4–T1 0·041 0·03
S2–T3 * *** 0·495 0·101 S1–T1 ** *** 0·558 0·083 S2–T3 ** *** 0·934 0·036 S4–T3 0·040 0·03
S2–T2.R * *** 0·487 0·103 S2–T2.R *** *** 0·548 0·090 S2–T2.R * ** 0·929 0·037 S2–T2 0·036 0·02
S2–T2 *** *** 0·476 0·099 S2–T2 *** *** 0·533 0·089 S2–T2 NS *** 0·927 0·036 S2–T3 0·035 0·02
S2–T1.R *** 0·462 0·090 S2–T1.R *** 0·515 0·079 S2–T1.R *** 0·925 0·039 S4–T2 0·035 0·02
S2–T1 0·395 0·071 S2–T1 0·452 0·078 S2–T1 0·915 0·033 S2–T2.R 0·034 0·02
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M. teleius (prevalence = 0·15) Evaluation data (n = 21)
S3–T3 ** *** 0·436 0·072 S3–T3 *** *** 0·618 0·058 S4–T1.R *** *** 0·905 0·026 S4–T1.R 0·53 0·29
S4–T1.R * *** 0·428 0·075 S4–T1.R NS *** 0·607 0·053 S4–T1 *** *** 0·900 0·024 S4–T1 0·51 0·29
S3–T2 *** *** 0·420 0·071 S3–T2 *** *** 0·603 0·053 S3–T3 NS NS 0·897 0·024 S3–T3 0·50 0·34
S4–T1 NS NS 0·402 0·074 S3–T1 ** *** 0·592 0·056 S4–T2 NS ** 0·896 0·025 S4–T2.R 0·49 0·31
S4–T2.R NS NS 0·399 0·077 S4–T3 *** *** 0·585 0·055 S4–T2.R * ** 0·895 0·026 S4–T2 0·49 0·31
S3–T1 NS * 0·398 0·075 S4–T1 NS *** 0·574 0·053 S3–T2 NS ** 0·893 0·024 S3–T2 0·48 0·33
S4–T2 * *** 0·395 0·074 S4–T2.R * *** 0·571 0·056 S2–T1.R ** *** 0·839 0·024 S4–T3 0·47 0·32
S4–T3 *** *** 0·391 0·072 S1–T3 NS NS 0·566 0·054 S4–T3 NS * 0·889 0·025 S2–T1.R 0·47 0·26
S1–T3 * *** 0·379 0·067 S4–T2 NS NS 0·563 0·055 S3–T1 NS * 0·889 0·026 S3–T1 0·46 0·33
S1–T2 * *** 0·373 0·069 S1–T2 NS *** 0·563 0·054 S2–T1 NS *** 0·887 0·024 S2–T1 0·46 0·25
S2–T1.R NS *** 0·367 0·066 S1–T1 *** *** 0·560 0·055 S1–T3 * ** 0·886 0·025 S1–T3 0·46 0·31
S1–T1 *** *** 0·363 0·070 S2–T3 NS *** 0·528 0·056 S1–T2 NS NS 0·884 0·025 S1–T2 0·45 0·31
S2–T1 ** ** 0·346 0·062 S2–T1.R *** *** 0·526 0·057 S2–T2 NS NS 0·882 0·027 S2–T2 0·45 0·28
S2–T2 NS *** 0·339 0·067 S2–T2.R NS * 0·511 0·057 S2–T2.R NS ** 0·881 0·027 S1–T2 0·44 0·30
S2–T2.R NS 0·339 0·070 S2–T1 NS 0·509 0·057 S1–T1 * 0·881 0·026 S2–T2.R 0·44 0·28
S2–T3 0·338 0·064 S2–T2 0·506 0·056 S2–T3 0·878 0·026 S2–T3 0·43 0·29

P1, P-level comparing the model with the next in the sequence.
P2, P-level comparing the model with the second next in the sequence.
Significance levels: NS. > 0·05; * ≤ 0·05; ** ≤ 0·01; *** ≤ 0·001.

Adjusted D2 max. Kappa AUC Occurrence probabilities 

MT P1 P2 Mean SD MT P1 P2 Mean SD MT P1 P2 Mean SD MT Mean SD

Table 4. Continued
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T3 and T1. Strategy 2 and strategy 4 both showed a very
similar pattern of performance. However, this pattern
was often opposed to that of strategy 1 and strategy 3
showing a decrease in model performance when longer
time periods were used. In fact, only the differences
between T3 and T2 and between T3 and T1 for the
Kappa value were statistically significant (P < 0·001) for
both strategies 2 and 4. All other pairwise comparisons
were not significant (P > 0·85), indicating a decrease in
model performance and hence no advantage of taking
into account historical data records.

Furthermore, the results for M. didyma revealed sig-
nificant differences (P < 0·001) between all pairs of
restricted and non-restricted model types, indicating
enhanced performance when former presence data did
not remain in the pools of initial pseudo-absence data.
For C. tullia the performance of the restricted strategies
was significantly better in combination with T1 (P <
0·001) as well as T2 (P < 0·05), except for max. Kappa
which did not differ significantly between S4–T2.R
and S4–T2. No significance was found with M. teleius
either for the adjusted D2 and AUC for strategies 2 and
4 when data from T2 (1971–2000) were used. On the other
hand, a significant increase in model performance
(P < 0·001) was achieved when data from T1 (1991–

2000) were used. Significant (P < 0·05) differences
existed independent of the period the data originated
from when restricted and non-restricted model types
were compared by the max. Kappa coefficient.

  .   
 

General model performance of the three species could
be significantly enhanced by using longer time periods
and refined strategies (Table 4). The adjusted D2, measur-
ing the proportion of explained deviance, ranged from
0·33 to 0·67, representing low to good model fits. Model
accuracy measured with the AUC was high for all species,
reaching values between 0·875 and 0·97. Even though
max. Kappa was not the preferred measure for model
accuracy because of its dependence on prevalence
(Fielding & Bell 1997; McPherson, Jetz & Rogers 2004),
we used it as a valuable performance measure to classify
the model types because prevalence remained constant
for species-specific models.

The ranking of the model types is compiled in Table
4 and shows the prominent model performances of
strategy 3 and the benefits resulting from using species
presence data from longer time periods. Strategy 2 was
generally the least effective strategy and always clearly
separated from strategy 3. Strategy 1 often revealed
the next best model performances, followed or already
mingled with the outcomes of strategy 4. Evaluating the
benefits of the restricted pools of pseudo-absence data
it could be recognized that for all three species the
restricted pools of pseudo-absence data always led to
better results than when only the non-restricted pools
were used. However, in the case of  M. didyma and
C. tullia the restriction did not outperform model types
using presence data from the longest time period T3.
For every species the sequences of the model types
across the three performance measures were compared
using Spearman correlation coefficients (Table 5). An
identical sequence (R2 = 1) was only achieved between
the adjusted D2 and AUC for M. didyma, but the two
measures also led to a similar sorting of the model
types for C. tullia. Moreover, max. Kappa in combina-
tion with either the AUC or adjusted D2 also provided
good accordance. However, compared with M. didyma
and C. tullia, M. teleius showed lower agreements
between the performance measures. Furthermore,
M. teleius also showed low agreements of the measures
in combination with either M. didyma or C. tullia
(Table 6), whereas the latter two showed sequences of
model types more similar to each other. However, the
max. Kappa value was very similar for every pairwise
comparison, indicating that these sequences differed
comparably.

The robustness of the resulting ranking of the model
types on the basis of the three performance measures
was confirmed using the occurrence probabilities for new
species presence data recorded between 2001 and 2005
(Tables 4, 5 and 6). In particular, M. didyma showed

Fig. 3. Model performances for the three time periods T1 (1991–2000), T2 (1971–2000)
and T3 (1901–2000) for M. didyma. Model performance is expressed by adjusted D2,
max. Kappa and AUC for the strategies S1, S2, S3 and S4.
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high accordance, whereas the lower values of the wet-
land species might have resulted from low prevalence.

Discussion

The two goals of this study were to compare different
strategies of selecting pseudo-absence data from data
sets that only contained species presence records, and
to assess the role of historical species presence data in
predicting species distribution. The strategies aimed at
defining the most valid absence data by restricting the
total number of communes present in the study area.

 

The performance of a binomial generalized linear
regression model increases with the degree with which
presence data can be discriminated from absence data.
In general, we would therefore expect valid absence
data to discriminate better than pseudo-absence data.
As the chance of selecting pseudo-absence data that
results in high model performances is low when the
whole data set is used, the performance of strategy 1
was expected to be the poorest. However, the results
that were consistent for all species in the analyses
showed that not considering communes lacking butter-
fly species presence data in strategies 2 and 4 resulted in
significantly lower model performances compared
with strategies 1 and 3, respectively. Therefore, in these
cases only pseudo-absence data that discriminated pres-
ence from absence data less well were left in the pools.
Hence the hypothesis that in communes where a lot of

non-target species have been reported, the absence of a
target species is expected to be more likely, could not be
corroborated from our data. It seems, however, reason-
able to think that large numbers of species records
should indicate lower chances of having missed or not
reported a presence of the target species. This suggests
that, as communes where sufficient sampling effort was
conducted were small in number, their role as well-
discriminating pseudo-absence data might have been
negligible in the analyses conducted here. Thus further
analyses should be conducted to compare communes
where only a few non-target species were recorded with
communes where several non-target species were
observed.

The hypothesized increase in model performance
when communes with presence data of auxiliary species
were no longer retained in the initial pools of pseudo-
absence data (strategy 3 vs. strategy 1, strategy 4 vs.
strategy 2) was confirmed by using new species pres-
ence data. Thus the discrimination power of the logistic
regression models could be increased further by not
considering communes in the pool of initial pseudo-
absence data that shared similar environmental
characteristics with the communes where the modelled
species occurred.

Besides the strategies applied in this study, other
strategies could possibly help to narrow down the
number of pseudo-absence data. One alternative would
be to let experts define sites where a certain species has
never been observed and to use these sites as model
absence data. Other selection strategies based on ana-
lytical approaches include the one proposed by Engler,
Guisan & Rechsteiner (2004), where a prior model such
as ENFA served to restrict pseudo-absence data to
areas of low habitat suitability. However, the risk here is
that a bias in the stratifying ENFA model becomes
amplified in the binomial presence–absence GLM.
Furthermore, pseudo-absence data could be preferably
sampled from sites with environmental characteristics
not similar to those where the original presence data
were found (Zaniewski, Lehmann & Overton 2002).
Some authors have pointed to possible negative effects
as a result of the inclusion of absence data from beyond
the species’ known distribution (Austin & Meyers
1996; Thuiller et al. 2004). The strategies in this study
did not account for such absence data because the
range of species’ distribution was rather wide compared

Table 5. Spearman rank correlation coefficients indicating the agreement among the rankings of the model types for each species.
Rankings were based on the model performance measures (adjusted D2, max. Kappa and AUC) and the occurrence probabilities
(Prob.) predicted for new species presence data
 

 

M. didyma C. tullia M. teleius 

max. Kappa AUC Prob. max. Kappa AUC Prob. max. Kappa AUC Prob.

adj. D2 0·97 1·00 0·98 0·97 0·99 0·56 0·92 0·88 0·89
max. Kappa 0·97 0·98 0·96 0·40 0·69 0·70
AUC 0·98 0·56 0·99

Table 6. Spearman rank correlation coefficients indicating
the agreement among the rankings of the model types for pairs
of species. Rankings were established for all performance
measures (adjusted D2, max. Kappa and AUC) and the
occurrence probabilities predicted for new species presence
(Prob.)
 

 

M. didyma vs. 
C. tullia

C. tullia vs. 
M. teleius

M. didyma vs. 
M. teleius

adj. D2 0·90 adj. D2 0·81 adj. D2 0·63
max. Kappa 0·88 max. Kappa 0·86 max. Kappa 0·86
AUC 0·94 AUC 0·40 AUC 0·31
Prob. 0·64 Prob. 0·50 Prob. 0·37
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with the extent of the study area and related environ-
mental range. However, the results of the wetlands spe-
cies showed that the models could still be improved
concerning their predictive success, which might result
from the low prevalence of these species.

  

The second goal was to analyse the benefits of using
historical species records comprising different time
periods for predicting species distribution. The results
revealed that the consideration of longer time periods
generally greatly enhanced model performance. Signi-
ficant enhancements were already achieved when only
former presence communes of the target species itself
did not remain in the pools of pseudo-absence data, as
shown in strategies 1 and 2. Model performance was
also significantly increased in strategies 3 and 4 where
additionally the former presence of auxiliary species
was not considered. An increase in model performance
resulted when more communes for which environ-
mental characteristics differed from communes with species
presence remained in the initial pools of pseudo-absence
data. Hence it can be concluded that the present-day
environmental characteristics of communes where recent
presence was recorded are very similar to communes
where presence was mentioned in the past. Consequently,
it is possible that a species presence will be reconfirmed
in communes where it was once observed. This reveals
the problem of modelling species’ distributions by using
unsystematically recorded presence-only data that just
contains records from the most recent time period, for
example the last 10 years, and where ‘ghosts’ of past
presence can take on great importance. As not all pos-
sible presence data were recorded in this period, sample
bias, a problem inherent to most presence-only NHC
data sets (Hirzel et al. 2002; Graham et al. 2004), can
be expected. Yet the strategies presented here make active
use of former presence data by not considering them as
pseudo-absence data in the GLM.

For M. teleius, increases in model performance in
strategies 2 and 4 were not always achieved by using
data originating from longer time periods. As the number
of pseudo-absence data in T2 only differed slightly
between C. tullia and M. teleius and was actually iden-
tical in T4, we reject the possibility that the number
of pseudo-absence data in the initial pools caused the
different results. Instead we attribute the encountered
deviance to the quality of  the presence data of  M.
teleius used in the models. However, further analyses
have to be conducted to analyse the influence of differ-
ent presence data on model performance.

    
 

The ranking of the model types according to the three
performance measures revealed that changing the
strategy often contributed more to enhance model

performance than considering historical species
records. This applied most of all to C. tullia and M.
didyma. These two species also showed very similar
rankings of the model types, independent of the per-
formance measure used. Moreover, the order of the
model types was very similar between these two species,
whereas the comparisons with M. teleius revealed
lower accordance. We interpret the lower correlation
values obtained for M. teleius with its general lower
model performance. The highest values of adjusted D2

and AUC achieved for M. teleius approximated the
lowest values achieved for C. tullia and M. didyma.

 

Species distribution models have become very
important management tools in nature conservation
planning (Rushton, Ormerod & Kerby 2004; Guisan &
Thuiller 2005; Whittaker et al. 2005). Such models can
help planning authorities detect new species occur-
rences (Engler, Guisan & Rechsteiner 2004; Guisan &
Thuiller 2005) and define priority areas for species pro-
tection or reintroduction (Pearce & Lindenmayer 1998;
Hirzel et al. 2002). Up to the present, the value of his-
toric species presence data originating from abundant
NHC has received little attention in connection with
modelling purposes. However, these data have been
shown to be useful for fitting predictive species distri-
bution models (Graham et al. 2004). The results of this
study show that models using NHC data to select pseudo-
absence data can be improved compared with models
that rely on purely random selections of pseudo-absence
data. Therefore, we suggest using (i) recent presence
data of auxiliary species and (ii) historical presence data
of the modelled and auxiliary species to restrict the
pools of  pseudo-absence data used to fit presence–
absence models. These findings need further testing
with other data in other areas. None the less, our results
confirm that saving historical species distribution data
from NHC should become a task of  high priority for
future research in conservation biology and applied
ecology.
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